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OPTIMAL PROBLEM-SOLVING SEARCH-

ALL-OR-N2NE SOLUTIONS

Herbert A. Simon

and
Joseph B. Kadane

Carnegie-Mellon University

ABSTRACT

Optimal algorithms are derived for safisficing problem-solving search, that is,

search where the goal is to reach any. solution, no distinction being made among

differ-ent solutions. This task is quite different from search for best solutions or

shortest path solutions.

L:onstraints mav be placed on the order in which sittes may be searched. This

paper treats salisficing searches through partially urdered search spaces where there

are multiple alternative goals.

(1) Simon was c.upported in pait by Research Grant MH-07722 from the National

Institule of Mental Health and in port by the Advanced Research Projecls Agency of the

Office of the Secretary of Defense (F14620-73-C-0074) which is monitored by the Air

Force Office of Scientific Research; Kadane was supported in part by ihe Office of Naval

Research under contract number NOC0i4-67-A-0314-002.
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OPTIMAL PROBLEM-SOLVING SEARCH:

ALL-OR-NONE SOLUTIONS

Herbert A. Simon
and

Joseph B. Kadane

Carnegie-Mellon University (1).

In the representation of problem solving as a search through a tree or directed

graph, several different cacý; must be distinguished. In one case (Best-Value Search),

values are associated with tfrminal nodes, and the aim of the search is to discover the

node bearing 0-e highest value. This case is only interesting if information becomes

available during the course of the search which, by excluding some portions of the

search space, makes exhaustive search unnecessary.

In the second case (Shortest-Path Search), which can be treated as a special case

of the first, the value associated with a terminal node is the length of the shortest path

from the starting point to that terminal, and the aim is to find the terminal with the

smalles! value (i.e., the terminal closest to the starting point). In either the first or

second case, a further requirement may be imposed on the search algorithm that it be

the algorithm for finding the best value or shortest path, as the case may be, that

minimizes the expected search effort for attaining its goal.

In a third case (Satisficing Search), there is a designated subset of terminal nodes

called goals, and the aim of the search is to reach any of these goals. No distinction is
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made between the values of different goals -- all goals are equally desirable. In one

variant of this case, there is a single, unique goal, and only one paih leading to it. In

either variant of this third case, we are interested in search algorithms that minimize

the expected search effort for reaching the first goal (or, if the goal is unique, for

reaching that goal). It is this third case which is the subject of the present paper.

Tasks of all of these three types are common in the literature of artificial

intelligence. Came-playing programs are concerned with discovering "best" move!,

hence involve best-value search. Programs for solving certain scheduling proolems --

for example, the Traveling Salesman problem -- search for shortest paths. Theorem-

proving programs, however, and nmost problem-solving programs are concerned with

satisf icing search.

Search algorithms designed to handle tasks of the different types may need to be

vastly difierent, arid tile search effort required to tind soiuiions may iipornd to ,.,"tc

different parameters of the task environments. Suppose, for example, that needles of

varying sharpness have been distributed randomly throughout a haystack of size F. A

best-value search algorithm designed to find the sharpest needle in the haystack will

have to search the entire stack, and will require an effort proportional to a. A

satisficing algorithm to find a needle sharp enough for sewing will only have to search

until it discovers one such needle. Its expected search effort will be inversely

proportional to the average density of "sharp enough" reedles in the stack, and

independent of S.

If the needles aie riot distributed *ith uniform density, ther the Kind of

Information about the distribution tha, would be useful to guide a best-value search

may be quite different from the information that would be useful to guide a satisficing

2
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search. Intuitively, one can see that for best-value search it would be helpful to be

able to set an upper bound on the sharpness of the needles; to be found in any

r particular region. For salisficing search, one would want to know the probability of

finding a sharp-enough needle in any given region. From this simple example, therefore,

we see that we need separate theories of search a!gorithms for best-value and

satisficing search, respectively.

Several cases of satisficing search have already been treated in the literature.

These include both the casc where sites may be searched in any order, without

constraint, and the case there sites are partitioned into a number of classes, and there

is a specified order in which sites in each class must be seatched (but no between-class

constraints). We call this case, "parallel search."

,, of, i ,.l-... ..... ..... . . .intllitr (Changc and Slagle. 1971; Kowalski, 1969.

1972; Nilsson, 1971; Pohl, 1971), algorithms are to be fou;id for best-value and

shortest-path search through trees. A recent paper by Garey (1973) provides an

aigorithm for satisficing search through trees, but neither the algorithm nor its method

of derivation encomp;sses general partial orderings. It is the purpose of this paper to

fill this gap by extending our results to satisficing searches where the ordering

constraints are typical of those in problem-solving tasks: that is, to searches in partial

orderings.

In the first Iwo sections, we will review the optimal search algorithms for

unconstrained and parallel (satisticing) searches, respectively. In the third section, we

will extended our results to satisfticing searches through partially orderea search spaces

in the case where there are multiole alternative goals.

1. Satisficing Search Without Ordering Constraints

3
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An unknown number of chests of Spanish treasure have been buried on a random

basis at some of a sites, at a known dep h of three feet. For each site there is a known

unconditional probability, s(i), j-L...,o, that a chest was buried there, and the cost of

excavating site i is Q(i.).

A strategy, L is a permutation of any subset of the integers from I to a.

Suppose a subset of sites is searched in the order given by L under the condition that

the search is terminated as soon as one treasure is found. then we can associate with

the strategy j an expected cost Y(j) of this terminating search, and a probability 2(t)

that a treasure will be found. P(L) - ]-I(f), where ,(t) is the probability that there is

treasure at none of the sites of t. We assume that V(j) > 0 and S(L) > 0 for all 1. That

is, no site can be excavated without cost and no site contains a treasure with certainty.

Let (ab) be the strategy consisting of executing stratega a. followed by b. where

the subsets of a and tj are non-overlapoing. Then by our definitions, we have:

(1-1) V(W) -q,

where j is the strategy of excavating the ith site.

(1.2) V(ab) - V(a) + S(a)V(b)

(1.3) S(at,) - S(a)S(b).

Equation (!.2) states that the expected co-st o ., te-minoting search over (aW) is

the expected cost, Y(O), of a terminating search over A plus the product of the expected

cost of a terminating search over b by the probability, S(a), that the latter search is

necessary (i.e., that treasure was not found in a). Equation (1.3) states that the

probability of not finding a treasure in (ab) is the product oi the probabilities of not

finding treasures in a mind b. respectively.

The functional equations (1.2) and (1.3) are studied 1 Kadane (1969).

4
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It is evident that S is asto.iative aild commutative, so that S((ib.k) "(A(bý)) and

S(aL) - S(b_"); while Y is associative, but not commutative. Defining A, " (e112"'-,li) and

S(Ao) ,, ,(aO) = 1, we find readily that:

(1.4) V(Ar) V(a I a 2 ,...,ar)
r i-I

= n S(aj)V(aj)
i-1 j=0

r
- E S(A.i_)V(ai)

i= 1

We also note for later reference that:

(1.5) P(ab) - P(a) * P(b) - P(&)P(b) - P(a) + S(a)P(b).

We cotnsider now the effect upon the expected cost of search of excavating the

same set of sites but in different ordees -- by strategies (&hM) and (afLkWJ, say, where

a and d may be empty, S(&), with X rmply, equals 1, and Y(X), with X empty, equals zero.

(1.6) V(abcd) - V(acbd)

V(a) + S(a)V(bcd) - V(a) - S(a)V(cbd)

(1.7) - S(a)[V(b ;) - V(cbd)J

(1.8) - S(a)[V(bc) + S(bc)V(d) - V(cb) - S(cb)V(d)]

But, since r(bi) - S(, ), Equation (1.8) simplifies to:

(1.9) V(abcd) - V(acbd) = S(a)[V(bc) - V(cb)]

(1.10) = S(a)[V(b)P(c) - V(c)P(b)]

In particular, if b and , consist of the single sites L and jL respectively, then it will

be cheaper to excavate j before j iff O(t) > O(j), where 0(t) = E(L)/Y(L). Moreover, this

result holds for all a'nd j. The optimal strategy, therefore, for finding a single treasure

is to excavate sites in descending order of P(j) until a treasure is discovered.

Similar results were obtained by Dean (1965), Kadane (1969), Joyce (1971), and

Mitien (1960).
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2. Search With Parallol Order;ng

Suppose, now, that the Spanish Ireasuies are buried, as before, but that neither

the sites nor the depths of burial are known with certainty. At eaKh site a sequence of

one-foot slices can be excavated, and a treasure may be disclosed by the renioval of

any one of these slices. The probability that a treasure lies just below any specified

slice is Known. Designate the probability that the treasure lies below slice J of site j as

A particular slice (Lg) can onfly be searched after all the other slices above it, (hi),

I. < L- have been searched. Hence, an admissible soarch strategy will be an ordering of

a subset of slices sJch that (LI-& does not precede (id) if g > t. For a given strategy, let

t(UA) be the order number of the slice (U).

Now, we can define quantities, Y(),, el) ,."d ,•l) exactly as before, so that

iEin %tamai wslU Mir** -h *....-kli ....tao We wish to

find the strategy that minimizes Y(l) where I ranges over permutations of the entire set

of n1 integers subject to the order constraint that L(L t.) > ( 6g) if I > L.

A bloc ef slices is a set of slices belonging !o the same site that are consecutive

in that site. (The members of a bWoc need not be consecutive it any particular strategy,

since they may be int-!rspersed with one or more slices from other sites.)

In a strategy (aIM), b is (weakly) monotonic decreasing if for each pair of

segmerils, with order numbers L i in tb 0(4) ! 0(4) if j < i. The substralegy b is

nionotonic increasing if, for each L i in the sequence 0(j) a 0(j) if - i.

in a strategy (akb), Lt and , are interchangeable if permuting the strategy into

(a•c•) does not violate the order constraints (i.e-, does produce another strategy).

Theorem 2 1: In (jt&M, L and C are interchangeable iff no

6
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site represented by one or more slices in b is represented by any slices in

Proof: The order constraints apply to pairs of slices belonging to

the same site. Under the conditions of the theorem, interchange of b with r

will not reverse the order of any pair of slices belonging to the samo sOte,

hence will not violate any order constraints.

Conversely, if slice 1(bt) in b arx slice J(iL4) in L belong to the same

site, then the order constraints require that f < & (since Ui-) < 1(4)). Out,

in (cQ) we will have i(b.) > t(La), wnich violates the constraints.

Q. E. D.

Theoc em 2.2: If L and . are interchharip able in ("jl4). end ifI0k_) > 0(1), then the strategy can be impcved by inlerchanging b and L

hev.Le. i!, rO Oplmoi.

Proof: Using Equation (1.10), we hae:

(2.1) V(abc•:) - V(acbdi - 5(a)[VMb)R(c) - V(h)]

(2.2) - S(a/(b)V(0)[9ic) - 0(b)) > 0.

Q. C. D.

Theorem 2.3: If t2 and d ar strategies Onat are also consecutive

blocs of .,te 6 with d following b. and i' o(d) > Otb), then a sirotegy of

(abode) with r. non-null is rýOt optimal.

Proof: By the or.mering constraints, d canrvt precele l. Suppose it

does not follow immediately (L is non-n•.l) Since (Up !s a bloc, no member

of L belongs to site 6 for all other slices of L must, by the ordering

con-tranrts, precede b o; 'ollow d- Either O(L) > 0(b), or P(L) sV t9() < p(ld).

7
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In the first Case, the strategy can be improved (Theorem 2.2) by

interct1aong•nrg t with k, ,ence v. not optinml In the second case, the

Oftraiegy can be improved by interchanging C wilh IL hence is not optimal.

Q E. Do.

We (ail the bloc (bd) of Theorem 2.3 an mi•iyLjWt W.L. Each indivisible bloc is

made up Cf (onse(uttvz slices from a single site, and ,is v*visibl$f0ity depends only on

the O's of stlategi-s from that site. Hence we can now proceed, for each individual site,

to determine *t-. rmaxim , it.divsible blocs Uy joining blocs that satisfy the conditions of

Theorem 23 until the '0s for all the separate blocs thai reman are monotonic

' We i.zI .dl? "iiv reuti .s a corollary.

Corollary 2.3-1: An optimal solutmn consists of a sequence of

maxnia; 'ncjv,.'mble blocs su(h that the 's of the curcestive _so•s of e-vty

given site are monotonic decreasing

We are now ready for the main theorem,.

Theore.in 2 4: If a strategy consists of a sequence of mximmal

indivisible blocs. and it the O's associated with these blocs are monotonic

de(rea,-,ý,g, then the str'•o..gy t, optimai

Proof: I Cctollary 2.3.1 guarantees that any optimal strategy must

con•'.st of a sequence of maximal indi%,isible bloc., and that the O's of the

hubý.qctier-cp of bloc, belonning to any give.1 sv'e are monotonic derreasing.

2 "lie stralegy def,nrd n'. Theorem 24 is ut que up to trivial

interchanges of -eegments with equJal 0, which do not change the value of •.

3 The oniy allowable permutations that preserve the maxiimal

81



Problem- Solvine Sear(h Uecember 27, 1974

indivisible blocs and tht i order involve interchanges of strategies

telonging !o dferent sites and not separated by a strategy belonging to

either of their sites.

4 Suppose a strategy is optimai, but that 0 is not monotonic

decreasing. Consider the first instance where Of(b) > 0(a). with A

immediately preceding b Since the blocs belonging to a given site are

monotonic decreasing in value, a and t must belong to different sites, hence

are interchangeable, by Theorem 2 1. Therefore, by Theorem 2.2, the

strategy would be improved by interchanging a and b. contrary to the

hypothesis that the sIrategy is optimal

Q. E. D.

Thpnrem 2_ 1 i•al.,. us th.t 'c,, op;mia: str,,t:y vi digging ior doubloon. s is to

calculate the average yield (per fool of digging) for ech maximal indivisible bloc of a

site, then excavate the successive blocs in decreasing order of yield.

The evaluation functions 0, take into account not ornly the potential return, O(O),

ard cost, qi,, from the slice being executed, but the prospective value of getting clo.ser

to underlying sli(es that have larger 0 values than the current slice. This characteristic

of !he evaiuation function adds a certain "depth-first" tendency to the strategy. For

example, suppose that it i•s known that the treasure is buried no! less than five feet

below the gi Dund. Then, if the optimal strategy calls for excavation to begin at the ith

site, it will continue at that site unlil the excavation has reached a depth of at least five

feet.

In the special case in which &gj implies 9(0,i) < 0(,f), Kadane (1969) finds the

optimal ordering to be according to 0. The results of this section are new when the

above .'ndclhon i!. not sat,.,ied.

9
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3. Search Through a Oartially-Ordered Space

Our next task is to extend the results of the previous section to a search through

a partially-ordered set of nodes, or cycle-free graph, which includes the familhar case of

search througii a tree. Theorem-proving and problem-solving searches are commonly

representable as searches through trees or, rmore generally through partial orderings.

In such a search, a new node is obtained by applying an operator to branch from some

node reached previously. In this section, we will prove a theorem (Theorem 3.1) for

optimal search through a partial ordering which is analogois to Theorems 2.3 and 2.4

for parallel orderings. As before, the key role is played by an evaluation function, 0",

which can be assigned to each branch at each node already reached in such a way that

it is always opiimal to search next the branch with larg.st 0".

The proof of optimality for a partial ordering is a great deal more complex than

the proof for a paraiiel ordering, mainly because 0 for a node now has to be .. xit-.iz.u

over all the alternative sequences descendant from that node. The notion of the "best

set" of a node (the set of nodes descendant from that node for which 9 is maximum)

replaces the "maximum indivisible bloc" of the previous section. The W" of Theorem 3.1

is this best set.

As before, we assume that for each node, L of the set a value .(j) is given,

representing the probabilty that a solution will be found at that node. The cost of

exca'.'aing each node from one immediately before .'q).

A strategy L(C:" for a set of nodes, 2 • ,dering of the nodes of 1 that

satisfies the order constraints or. those nodes. A :•nd 11 be two mutually exclusive

sets of nodes, and Q their set sum. The P_ and I are interchangeable iff there exists a

strategy r. - (ab) and a strategy r_ (b"a"), whert L and L." are strategies on C. a and

10
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a" strategies on A, and L and b" strategies on F2. Clearly, if A and B are

interchangeable, if a is any strategy of A and if - is any strategy of L, then (ab) and

(I") are strategies of _.

Corresponding to the notion of a bloc in the previous section, we introduce the

concepts of iniLAt and tIQmdai blos of a set of nodes- Let A be a partially ordered set

of nodes, and let it contain B and . = A-. Then a is an initial bloc of A iff there exist

strategies L on E3 and r on Q such that a = (.) is a strategy on A. El is a terminal bloc

of A iff there exist strategies b. on a and C, on Q such that a = (Ch) is a strategy on A.

As before, we can define for each strategy the quantities Y_(L), P_(t), a(t) and

0(t) P(t)/Y(L), all of which depend only on the subset, D. and its ordering, Lt

independently of the remaining nodes in the entire set. Note that E"'0 and S(L) are

constant over all strategies of a given set, Q., hence are functions of U; while Y(t) and

0(t) depend upon the strategy, L as well as the set, D.

A strategy of a set of nodes, D. for which 0 assumes its greatest value for that

set will be called a best strategy of 12 and will be designated by r'(1) and its Y by Y'(12).

An initial bloc, Q, of set I for which 0'(D) is maximal over all initial blocs of I will be

calied a best 5et of T, and the 0 of its best strategy will be designated by O"(L).

We now prove four lemmas that are needed for our main theorem.

Lemma 3.1. Let A -and AUL be initial sets of I such that: (1)

A is the best set of L. with best strategy t'(A) £; and (2) b is any

strategy for a.

Then, 0" (

Proof. Since A is the best set of L F" - O(a) - 0(ab).

Now, using Equation 1.5,

11
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(3.1) V(ab)•(ab) = P(ab) - P(a) + S(a)P(b)

(3.2) -V(a)O(a) + S(a)V(b)0(b)

But V(ab)0(a) z V(ab)p(ab), so that,

(3.3) V(ab)P(a) > V(a)O(z) 4 S(a)V(b)O(b)

Expanding the :eft-hand bide, we get:

(3.4) [V(a) + S(a)V(b))O(a) _> V(a)O(a) + S(a)V(b)P(b)

(3.5) S(a)V(b)o(a) ;• S(a)V(b)o{b).

so that, since we have postulated that S(a) 0 0 and V(b) 0 0,

(3.6) O(a) - 0" a 0(b)

0. E. D.

Lemma 3.2. Let A be a set consisting of the mutually exclusive

subsets of nodes 1L Q. and Q, where L is an initial bloc of &. while C and 12

are interchangeable, hence also both terminal blocs. Let the best strategy,

V'(A) be:

where b is a strategy for I, .- (r.. k) is a strategy for C end

d = l... ) is a strategy for 12.

Then 0(r.1) a 0(fl) z ... !> 0(4) > (dk)i

Proof: Suppose 0(d,) , •t(,j+). Then, by Equation (1.10), t1'(A) could

be improved by exchanging ;4 and ' contrary to the hypothesis that

O(A) is maximal. But the exchange is admi.sible, since Q and D are

interchangeable. Similarly, the supposition that ,< (d1 ) leads to a

contradiction.

Q.E. D.

12
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Lemma 3.3. Given A& E, Q and Q as in Lemma 3.2, with

r - (L (r....Lki and d - (d1... k), suppose thai A is a best set of L so that

V'(A) = 0'. Then: 0(d) a 0'(A), and therefore 0'(12) P 0'(A) - 0".

Proof: Define,

Then,

If 0(dk) - P(d.)/Y(dk) < 0', then O(C) > 0*. But C is a strategy for

an initial bloc of A. and also of L Since 0" is maximal over all such blocs,

the inequality is a contradiclion. Therefore P(dk) a 9".

Bu', by Lemma 3.2,

i •~0(d)-' -

• •.(dt ~ ~~). V( i)(d2)*-.-*•(dI ! ... (d, l )kLPY O

But, by definition, O(.) 2 0(d), whence,

• •~'(DQ) 0"€.

Q. E. D.

Lemma 3.4. Let (a,.d) and (&L"d.) be strategies over the sai~e set

of nodes. Then,

(3.7) V(acd) - V(acd) ,- S(a)[V(c) - V(c')]

Proof:

(3.8) V(acd) - V(acd) - V(a) + S(a)V(cd) - V(a) - S(a)V(cd)

(3.9) - S(a)[V(c).S(c)V(d)-V(c")-S(c)V(d)]

(3.10) - S(a)[V(c) - %(0)

13
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Q. E. D.

In order to state and prove the main theorem, we need to introduce some

additional notation. Let (a,... a.) and (b1 ... L.) be strategies. Define A'i as the best

permutation of (?,,...adr, , - (bQ...b), C-(bla1 ...btai), 6, - (ANijai), A'*i as the best

permutation of (ai,,,-..Ar), B'*i = QLý+!...k.r), Q*i - (blai+"...b.•)ra . e i - (ii+|A--'*i-1

Define r- -*r = AO = 0*r - BO - R*r - )L, the null strategy, with (A) = 1,

y() =0o.

Consider a strategy over the set L. having the form (I&), where f and g are

strategies over the non-overlapping sets E and a respectively. Let 0" be the maximum

of 0 over all strategies of D and let 1" be an initial bloc of G. and '(D") a strategy for

0" such that O(t'N") - 0". Finally, let h be the initial segment of g, consisting of t(Q2")

possibly interspersed with other nodes of G not belonging Io Q", and having the last

element of t'(12) as its last element. We now prove the theorem:

Theorem 3.i: If h contains any nodes not belonging 1o D., then

(Q.) can be improved (weakly) by moving these "intruding" ncdes beyond

the last node of D", that is, by bringing the nodes of D" to the front of Li

with the remaining nodes of h1 following them.

Stating the theorem in the notation previc.usly introduced, we

designate t'(D") by Ar - (-02"-r), and hi by Cr - f.al... r4), so tht

Br - (I I...b.r) is a strategy on the intruding nodes. Finally, we define mj such

that g - ,,.rm. By definition of D', A'*O - 6*0" The permutation of L

asserted by the Theorem to be an improvement, is then

h-= (Arr) - l.

If •.fg) is infinite, there is nothing !o prove. On the other hand, if

VtYt) is finite, then

14
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(3.11) V(fg) - VMf + S(I)V(Cr) + S(f)S(Cr)V(m) < O

so that Y(fj, Y,(Q) and YtM) are all finite. Now,

(3.12) V(fA' 0 0'0mn) - V(f) + S(f)V(A*0B*0) + S(f)S(A' 0B'0),V(mn)

Now S is commutative, so 5-(A*OW) - 5if,). Then,

(3.13) VWg) -V(fA* 0 13* 0 m) -' S(f)[V(Cr.) -V(A'oB'*o)l

Therefore, we wish to prove that:

(3.14) V(Cd) - V(A*OIB 0 ) ? 0.

Note that a's may be advanced forward, interchanging themn

* with L's. since D" is an initial bloc of h&

Proof: By identity, and remembering that

Or -' =EI~ A,* -=

r
(3i)V(Cr) - V(A*0 B*) - Z

i.1I Considering the individual terms of the summatien, we have:[(3.16) Ci*ii)VC-Ai-B-,

(3.17) =V(C1 1bA'i,1 B'1)-V(Ci..ib1A'*i-Bls)

But, by Lemma 3-4, ( 0.

Therefore,

(3.18) V(CiA 4
1',i3) - VCA*-Bi,

SV(Ci-lb1 '*i,B) - V(C~i-A"*i IbiB').

Applying Equation (1.10), with C-l

14 b. A7~ i- 8, d,-

we get,
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(3.19) V(CiA'*16*1) - VCA*-Bi,

ŽS(C1.-.l)[P(A'*i _ )V(b1) - P(bi)V(A'*.i- )1 whence

r
(3.20) V(Cr) - V(A* 0 80 ) ' 1:SC-)EiVA*-'(('il-b)

j1

W TI - T

where,

r
(3.2 1) T., E ( -)VbV(AiIP-s 1

imd

r
(3.22) T2-E S(jIVb)(A*-)~i

i.1

Consider 11. A'ij. is the best sirategy of a terminal bloc of Dn

Hence, by Lemma 3.3, Pi(Aý*') ;! 0-. so that
r

(3.23) T E SC-)~iVN;IO

Next, can';ider J2. Factoring SC 1

in (3.22), we obtain,

r
(3-24) T2 =£S(8 1..1 )V(bi)O(bi)S(Ai-)VA -,

Since Y(' - 0, we have the identity:

r
(3.25) S(Ai..i)V(AS*i,I) -1:Z where

-i.

(3.26) Zj- S(iA .)V(A"J j-) - (i)VA )

Using Equation (3.25) in (3.24), and then changing

the order of summation, we fin~d,

r r
(3.27) T2 -E Z E ijVbOb)

i-I -

16
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r
(3.28) E Z- E S(B,_I)P(bi)

r r
(3.29) L ZP(B,) - E Z1V(B,)0Wj)

* But satisfies the conditions of B of Lemma 3.1,

with &ýr as A-

Therefore, by that lemma, O(•j) P ". Hence,

r
(3.30) T2 s- Z V(Bj)0"

i-!

r j

(3.31) 5 [ Zi E S(Ui-j)V(bi)j"

r r

(332i < StBi.l) X I.Vb.r"
i-, i-1
r

(3.33) S< S(Bij)V(bi)S(A.i_)V(A 4 i.i_1" (by (3.25))

r
(3.34) S E S(Ci_!)V(bi)V(A**i_!)0*

i-i

Combining (3.23) and (3.31), we have, finally:

(3.35) V(Cr) - V(AOB*0 )? T -T2

E Z [S(Ci_!)V(bj)V(A'*i_])Y(V" - jl') - 9.

i-1

Comparing (3.35) with Equaticn (3.14), we see that this Is

the result we want, and the theorem is proved.

Q. E. D.

17
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4. Conclusion

In conclusion we wi ih to comment on how our results car be used in constructing

search algorithms. We will consider the case of z search throuigh a partial ordering

since search through a parallel ordering and independent search can be regarded simply

as special cases.

In some applications, we will have, in advance, a map of the entire search graph,

together with an estimate of g(R) for each of its nodes. In this case, 0" can be estimated

for each node after determining the maximal indivisible blocs. In other applications, the

search tree will only evolve in the course of the search itself. Then 0" cannot be

determined from the p(t.)'s, but will have to, somehow, be estimated directly.

In the case where a map of the search graph is given in advance, determination

o0 the 0" m.y,, be c. ..s.dera,,y fact.t!ted by us;ing -n ••lgorithm d-....,d by G-rcy

(1973). This algorithm provides a method, applicable to the "tree-like" portions of a

partial ordering, for reducing the entire set of nodes to a smaller set, essentially by

di~covering the maximal indivisible blocs and the optimal strategies for them. After

Garey's algorithm has been applied to carry the reduction as far as possible, the

maxir,•a indivisible blocs for the reduced system can be discovered, and the values of F"

associated with them computed. Once these values have been found, or estimated

directly if the search graph is not given in advance, the algorithm described in the next

paragraphs can be used to order the nodes optimally.

Suppose that, in a partial ordering, we assign to each branch, I, at each node, N.

an ordinal number, E(,N). Then, we can consrucLt a search algorithm of the familiar

search-scan variety, as follows:

LUt (EN) designate branch 13 at node h1 and let L be the list of all t(L.N) pairs

available for search, ordered according to L(,IN).

18
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1. Choose the first (ElN) pair on L

and generate the new node, N"*;

2. If N" is a goal node stop, elsei

3. Compute E(NB) for all branches from &*,

and insert the new (bra) pairs in their

appropriate positions in U

4, Return to Step 1.

Theorem 3.1 shows that if E(brN,) is set equal to the P" defined in the text, then

the search determined by the above algorithm is optimal.

The . alue, O"(ft,), depends on the probabilities of reaching the goal, R(j), at some

of the nodes that are descendants of U. In practice, these values of la(i) will usually not

eL .r.o. , -,, L in the algorithm wiii htave to o .a h.e.,ro,,, *zum,,lt Of r6 -- soffi

estimate of the "promise" of searching from N in the direction defined by B. Theorem

3.1 indicates what the nature of this estimate should be.

In estimating 9", we must postulate that the search will be continued through a

'best set" of nodes, the set of reachable nodes that maximizes the ratio of expected

return to cost of search. Search should continue in one direction at least as long as this

ratio continues to increase, and in fact, until it becomes lower than the best ratio for

some other branch. By this procedure, depth of search is balanced against the
expectation of success, so that a modest probability of success after a short search may

imply th• semi. 9" as a highe.r probability of success after a longer search.

19
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